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Restrictions of the simplest use of correlation and regression analysis to obtain a single-valued 
solution to the inverse kinetic problem are considered. The Coats-Redfern method is suggested 
as a version of nonlinear regression analysis to increase the unambiguity of the solution. 

Determination of kinetic parameters from the data of nonisothermal experi- 
ments is among the most difficult kinetics problems. Its solution without 
independent data is generally ambiguous. This ambiguity Stems from the fact that 
the calculation methods as applied to the data on the kinetics of a chemical process 
with an unknown mechanism result in a great number of kinetic functions and 
parameters which describe the process equally well. A "single" solution is often 
obtained from semi-quantitative subjective considerations. It might seem possible 
to achieve nonambiguity by applying appropriate statistical criteria to estimate the 
values underlying the choice of kinetic characteristics. 

However, the case,is much more difficult, as follows from the incomplete 
statistical analysis of experimental data performed by a majority of investigators. 
This is probably attributable to the fact that statistical methods do not generally 
provide the desired unambiguity. Nevertheless, it is unreasonable to renounce the 
correct statistical estimation of the results as a means of attaining objective 
unambiguity. We believe that further improvement of the methods of kinetic 
parameter calculations requires more careful consideration of the statistical aspects 
of these methods, which is undertaken in this series. The present paper deals with 
the analysis of individual reported results to show the importance of statistical 
approaches in nonisothermal kinetics to provide objective characteristics of these 
results and unambiguous kinetic parameters. 

Let us consider some of the well-known methods of calculating kinetic 
parameters, as suggested by Coats-Redfern [1], Satava [2] and Zsak6 [3]. 
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The first two apply correlation analysis to the linear form of the constitutive 
equation. The kinetic function chosen is generally based on the correlation 
coefficient. 

However, the choice of the kinetic function based on the maximum correlation 
coefficient is not always statistically well grounded, since the maximum correlation 
coefficient may differ insignificantly from its lower values. It seems necessary, 
therefore, to analyse the significance of differences in the correlation coefficients. 
As the sample correlation coefficient distribution with a small number of samples 
(less than 30) is of a complex form greatly differing from the normal one [4], the 
significance of two sample correlation coefficients may be estimated by taking into 
account the Fischer normalization transform: 

Comparing 

I + R  
Z = 0.51n ]~---~ = arthR (1) 

T = I arthR~ - arthR 21 (2) 

n 2 -  3 

(where n I and n 2 are the sample volumes, and R 1 and R 2 the corresponding 
correlation coefficients) with the normalized Laplace function parameter for the 
chosen significance level (U~), we may estimate whether the difference between R 1 
and R 2 is significant [5]. 

Considering (1) and (2), let us estimate the significance of R for the data of [6] 
dealing with the thermal decomposition of Mg(OH)2. The decomposition has been 
described by 17 kinetic functions g(ct), with R between 0.980 and 0.999. The authors 
chose the mechanism corresonding to R = 0.999. In Table 1, compiled from the data 

Talkie 1 Kinet ic  pa ramete r s  and  funct ions  M g ( O H )  2 ins ignif icant ly  differ ing in the R value 

kcal  
-g(~t) E, - -  A, s -  i R 

mol  

- In (! - ~t) 50.338 1.3"1014 0.997 
_3_ 1 

( - In (1 - at))l.s 32.698 1.4" 108 0.997 
1 

( - In (! - ~))~- 23.878 1.2" 10 ~ 0.997 
1 

( - I n  (1 - ~t))3 15.157 8.9"101 0.997 
1 

( -  In (1 - ~t))4 10.645 < ! 0.997 

(! - ~t)- 1 _ 1 60.716 6.3"1017 0.999 
1 

(1 + ~t)-2-+ ! 55.281 3.7"1015 0.999 

J. Thermal Anal. 30, 1985 



VYAZOVKIN, LESNIKOVICH: MATHEMATICAL STATISTICS 833 

of [6], the kinetic functions are presented along with corresponding kinetic 
parameters which differ insignificantly in the value of R, in accordance with our 
calculations by (2). It is important to note that, with insignificantly different R, the 
kinetic parameters A and E vary widely. By analysing in terms of (2) the correlation 
coefficients obtained in [6] to calculate the kinetic parameters using the Satava 
method, we have arrived at similar results. Thus, when (1) and (2) are used, 
correlation analysis of the data of [6] does not provide statistical grounds why the 
kinetic functions yielding R = 0.999 should prevail over those yielding R = 0.997. 

Zsak6 has suggested a method for calculating kinetic parameters and choosing 
kinetic functions based on the minimum standard deviation: 

/ r,(Bi-- By 
6 = X/ r (3) 

where B =  logg(a)-logp(x); g(a) is the integral form of the function 

e-X i e-u p(x) . . . . . .  x u dU; and r is the number of experimental points taken to 

+ x  

calculate B. However, similarly to the previous case, it is not sufficient to find only 
the minimum value responsible for the choice of g(~). 

It is necessary to estimate the statistical significance of the differences in ~ against 
6mi,. We have used the Fischer criterion (Fp) to estimate the significance of the 
differences in ~ from [3]. In all cases, ~2/~2mi . did not exceed the critical value o f F  r 
Therefore, the choice of the kinetic functionf(~) = 1 - a and the activation energy 
of 28.9 kcal/mole exemplified in [3] cannot be regarded as statistically well 
grounded. 

In view of the above, it is clear that the estimation of the ~inetii~ parameters and 
the choice of the kinetic function require assessment of the statistical significance of 
the values underlying the choice. The procedure of the significance assessment 
completely excludes subjectivity when choosing the kinetic function. However, such 
a choice is generally ambiguous. We believe that in a situation such as this, the 
kinetic parameters might be determined with the use of methods which do not 
require a knowledge of the kinetic function, e.g. the estimation of invariant 
Arrhenius parameters [7]. 

The problem of an unambiguous choice of kinetic functions has two main 
aspects. First, the difference between various kinetic functions describing a certain 
process does not often exceed the experimental error. Second, the majority of the 
methods of kinetic parameter calculation rely on a low-sensitive computational 
procedure oflinearizing different modifications of the basic nonisothermal kinetics 
equation. To be specific, it is shown in [8] that the linear form of the basic equation 
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suggested by Achar [9] does not permit distinction between Avrami-Erofeev kinetic 
functions (Am) with different m values. We have arrived at similar conclusions (cf., 
for example, Table 1) through assessment of the statistical significance of the values 
underlying the choice of the kinetic functions in the calculations with linearization. 

Renouncing the linearization of equations for kinetic parameters may increase 
the sensitivity of the calculation method to the form of the kinetic function. It 
should be noted that linearization, though yielding simple and convenient 
mathematical expressions, is not a necessary condition for estimating kinetic 
parameters and choosing kinetic functions. In this connection it i s  worth 
considering the potentialities of nonlinear regression analysis for an unambiguous 
choice of kinetic functions in nonisothermal kinetics. 

One of the possible nonlinear approaches to the choice of kinetic functions is 
suggested in [10]. It implies determination of the minimum standard deviation of 
the experimental degrees of decomposition from the one calculated from Eq. (4): 

al = A + B(ct2) + C(at2) z + O(~tu) a (4) 

which occurs under certain conditions, cs and 0t 2 are the degrees of decompositions 
at appropriate heating rates; A, B and C are constants dependent on the form of the 
kinetic function and the heating rate ratio. 

The choice of the kinetic function is based on the minimum standard deviation of 
the experimental ~ from a~ predicted with (4), 

It is to be noted that in this case too the minimum standard deviation may not 
always differ significantly from the nearest value. Further, if the experimental data 
do not correspond to any of the kinetic functions of the program, some inadequate 
kinetic function will correspond to the minimum standard deviation. Thus, when 
the approach in [10] is used, the adequacy of the chosen kinetic function must be 
estimated, e.g. by comparing the minimum standard deviation of g(~t) with its 
deviation due to accidental error in the ct measurement. This value is the extrinsic 
dispersion estimate. In this case, Fp may be regarded as an adequacy criterion. 

We think it reasonable to use nonlinear versions of kinetic parameter calculation 
methods in nonisothermal kinetics problems. To be specific, nonlinear regression 
analysis as applied to the Coats-Redfern approach with the linear Eq. (1): 

in T ' ( l - n )  ~-~ 1 -  T R T  
(5) 

is presented in what follows. 
Write the degree of decomposition as a function of temperature: 

~t* = ~(T~) (6) 
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The most exact values of the kinetic parameters A and E may then be found from 
the condition of the minimum value: 

1 r 
s2 - / r  2 ~:=~ ( ~ -  ~,)2 (7) 

where ~ is the experimental degree of decomposition 
Minimum requirement (7) yields the system of nonlinear equations 

OS 2 
-gE- = 0 

0S 2 
~ 0 (8) 

OS 2 
~ 0 

which may be solved numerically by the gradient method [11]. 
The calculation below shows that the S 2 dependence on any of the three 

parameters A, E and n, the other two being constant, is fitted rather well (around the 

A 

S 2 

s~ 

S2rnin. 
p ,  

X01 Xmin. Xo2 X = A,E,n 

Fig. 1 Schematic illustration of the dependence of the residual sum of squares from any of kinetic 
parameters (A, E, n) 

minimum) by some parabole (Fig. 1). The value S 2 is the boundary below which the 
differences between the residual sum of squares are not significant: 

S 2 = S2inFv (9) 

where F v is the Fischer criterion. 
Following (9), the variation of A, E and n from Xol  to Xo2 does not involve 

significant differences of S 2 against S2mi,, and hence the values 
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X 0 2 - X m i  n ~- Xmi n -  X01 are confidence intervals for A, E and n. For example, 
Emi n -  E01 = E 0 2 -  Emi n = E+ AE (the same for A and n). 

If kinetic functions different from f(~) = ( 1 - c  t)* are used, expression (7) 
becomes: 

1 K 
S 2 - ~ (g(~i)-g*(ei))  2 (10) 

K - 2 i = l  

2 where g(ct) is the integral form of the kinetic function. The value of Sm~, is chosen 

from the set of solutions to the nonlinear equations of the form: 

OS 2 -~-=0 
(11) 

OS 2 Tj-=0 

for each g(~t) function. The further procedure of  choosing the function g(~t) is 
similar to the choice of  the reaction order in Eq. (8). 

The significance of  the residual sum of  squares (10) may be estimated by 
comparing it with the deviation of  the g(0t) value due to accidental error in the ct 

measurements and then estimating the adequacy through Fp. 

A / 
0.6 

= 

0.4 

0.2 
I I i I i 1 . - - , .  

1.4 1.6 1.8 213 n 

Fig. 2 Dependence of the residual sum of squares from the reaction order valuein thecase ofMg(OH) 2 

Returning to the data of  [6], find the optimum values of  the kinetic parameters 
and the reaction order using the above approach. The change in the residual sum of 
squares vs. the reaction order is shown in Fig. 2. The minimum (7) as found by the 
gradient method is 0.2425-10 -4 at E = 57.706 kcal/mol, logA = 18,441 and 
n = 1.725. 

Confidence intervals for these values may be found in accordance with (9): 
S 2 = 0.5141- 10 -4. The projections of  the intersection points for the line S 2 = S 2 .0 
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and the parabola onto the abscissa represent the boundary values of the reaction 
order (Fig. 2). Similar relationship hold for S 2 vs. and log A (Fig. 3). The final 
values will be n = 1.734-0.24; E = 57.71 4-2.53 kcal/mol; log A = 18.444-0.89 
(the calculation is made for Trace 1 [6]). 

It should be noted that, tor the linear form of the Coats-Redfern equation, the 
reaction orders 1.5 and 2.0 yield equal correlation coefficients (Table 1). For 
nonlinear regression analysis in accordance with (7), the residual-to-minimum 
squared sum ratio is equal to 2.05 for n = 1.5, which is less than the critical value for 
19 degrees of  freedom (2.17), while it is in excess of  it for n = 2.0 (2.47). The kinetic 
function with n = 2.0 must be excluded, therefore, as it does not adequately 
describe decomposition. The comprehensive interpretation of the process using 
n = 1.5 will be grounded statistically, since this value ofn  lies within the confidence 
interval of its formal values n = 1.73 + 0.24. The predicted kinetic parameters are 
compared with experimental data in Table 2. The mean relative deviation from the 
experimental value is 2.27%. Thus, nonlinear regression analysis as applied to the 
data of [6] enables us to choose one of the two kinetic functions consistent with 

Fig. 3 Grafical illustration of the equations system (8) 

equal linear correlation coefficients. This points to the higher sensitivity of the 
nonlinear method to the form of the kinetic function as compared to the linear 
approach. 

Approximation of  the curve in Fig. 2 by the parabola 

S z = A n 2 §  (12) 

is a less accurate, though a more simple way, to find its minimum against the 
gradient method. 
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Table 2 Values of the experimental degree of decomposition (a) as in [6], 
of the theoretical degree of decomposition (~*) and of the 
relative deviation for Mg(OH)z 

(~ - o[*) 
~t* - - .  100, % 

.0251 .0268 6.77 

.0342 .0364 6.43 

.0478 .0456 4.60 

.0592 .0569 3.89 

.0797 .0759 4.77 

.0957 .0936 2.19 

.1162 .1147 1.29 

.1435 .1398 2.58 

.1777 .1799 1.24 

.2141 .2153 .59 

.2620 .2698 2.98 

.2894 .3000 3.66 

.3485 .3487 .06 

.4100 .4009 2.22 

.4715 .4739 .51 

.5308 .5299 .17 

.5900 .5853 .80 

.6538 .6561 .35 

.7107 .7055 .73 

.7563 .7507 .74 

.7950 .8038 1.11 

The values of  the residual sum of  squares and of  the reaction order consistent 
with the minimum are the coordinates of  its peak 

B 
n=i.  - 2A (13) 

2A 4A C -  B 2 
S~in = 4A (14)  

The confidence interval boundaries for n may be found by solving the quadratic 
equation (12), where S 2 = Sml.2 �9 Fp: 

n,,2 = nmin + / t , 4 A C -  BZ, (Fp -  1) (15) 
2A 
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The coefficients of (12) calculated using the least-squares method for the data of 
Table 2 are: A =0.00052; B= -0.00181; C=0.00159. The values ofnmi . and SZi, 
predicted from (13) and (14) are 1.730 and 0.2399"10 -4 , respectively. The 
confidence interval from (15) ranges between 1.50 and 1.96. 

Conclusion 

The wide use of statistical methods provides complete objectivity and higher 
unambiguity in solving inverse nonisothermal kinetics problems and in assess- 
ment of the accuracy of the results obtained. The accuracy is often over- 
estimated, because use is made only of the data of linear regression analysis, ap- 
plying one of the numerous linearization methods of nonisothermal kinetics. A 
more comprehensive statistical analysis allows conclusions of higher objective 
value concerning the confidence interval for kinetic parameters. Taking into 
account the inevitable formalism in describing complex processes such as the 
transformations of solids in terms of unique and simple kinetic functions, we may 
state that the real accuracy of the kinetic parameter values obtained by the methods 
of nonisothermal kinetics cannot be essentially higher than the accuracy found so 
far in the present work by confidential estimation of the kinetic parameters 
obtained for the global minimum using the Fischer criterion. 

Further improvement of the statistical approaches in nonisothermal kinetics 
requires, in particular, that the error in argument !/Tmeasurements be allowed for. 

The qualitative characteristics of the calculation methods applied in noniso- 
thermal kinetics involve a very important statistical problem, to be considered in 
Part II. 
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Z a ~ u n m e n f a M u g  - -  Die Beschr/inkungen der einfachsten Anwendung der Korrelations- und 
Regressionsanalyse zur eindeutigen L6sung des inversen kinetischen Problems werden er6rtert. Die 

Coats-Redfern-Methode wird als eine Version der niehtlinearen Regressionsanalyse zur Erh6hung der 

Eindeutigkeit der L6sung vorgeschlagen. 

Pe31oMe - -  PaCCMOTpeHbi orpanHnenn~ naH6oaee npocToro n c n o a b 3 o a a a ~  roppeaauHonnoro H 

perpeccnoHnoro ana.aH3oa ~IR no.qynearlrl e~aacTaeHno npaan~bnoro  petueHaa 3a~ana o6paTnofi 

gnaeTaga. Mexo~ KoyTca-Paadpepna npe~J~oyxen a ranecTae aapnaaTa neannehHoro perpeccnonnoro 

aHa~n3a ~ a  yse.~HqeHna O)IHO3HatIHOCTH pemenaa.  
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